Everyman Powered Science

By Beth Russell


Intellectual exceptionalism. The idea that scientists have a special quality that has been honed and amplified by training on difficult problems over copious hours hit a speedbump this week when video game players beat scientists in a competition to determine the structure of an Alzheimer’s Disease related protein. The game was Foldit, a research-based game designed to allow the incremental process of discovery in protein-folding biochemistry to be worked out by a group of players building on each other’s best ideas. The 469 players were able to deduce the structure faster than two crystallographers and a team of 61 undergraduate students using computer-based modeling, and faster than two computer algorithms for automatic structure determination.

Building highly accurate models of protein structure using crystallographic data is highly labor-intensive and the accuracy of these models can impact downstream science for many years after the initial model is produced. Research games like Foldit have revolutionized our ability to solve problems that required more labor than can be practically obtained. The phenomenal success of these games and other mechanisms for involving the public in scientific research signal a paradigm shift for the research enterprise. What was previously the purview of an elite few highly educated scientists is now, with a little training, the domain of the everyman. We call it Citizen Science. In a brief period, the concept of public participation of scientific research went from a few birdwatchers and butterfly counters to an international phenomenon of such importance that last year the White House issued a memorandum directing federal agencies and American institutions to take better advantage of the opportunities that Citizen Science provides.

The most interesting thing about the most recent Foldit results isn’t that the humans were faster, but they also developed the better model. This poses the curious scientist to ask why? I posit that the gamers beat the scientists and the computers for the same reason that revolutionary science isn’t usually developed from an incremental process, the same reason that we associate the word “Eureka!” with scientific discovery. This reason is plasticity.

Humans really can think outside of the box. Not only can we understand rules, we can also be curious about what happens when we bend or break them. Science has devised these “rules,” properties of different atoms, functional groups, and structural types. Unlike computers who must follow the rules coded in their program or algorithm, or the scientists who drilled the properties into their heads with years of study, the non-scientist can see the new way, the exception, that in the complex world of biology ends up being right pretty often. Throw enough people together, and you’ll get a few of these. Some right, some wrong, but the group is self-correcting and doesn’t take long to find the right combination of bends in the rules to solve the puzzle.

We need the scientists, to collect the data, to build hypotheses, and to integrate complex ideas that require deep knowledge, but we also need the everyman too. As scientists we can’t keep locking the discipline up in our labs and ignoring the power of bringing the citizenry to the table. For some problems, two (or two thousand) heads really are better than one.