Gaming for the Greater Good: Using Video Games to Advance Science

By Damien O’Connell

Want to revolutionize science research and education in this country? Use video games.

Imagine combining highly-engaging (and highly addictive) games in the vein of Angry Birds, Candy Crush, and Call of Duty with solving science’s hardest problems and increasing science literacy. The benefits would be enormous and wide-ranging. On one level, it could usher in medical breakthroughs, new technologies, and even applications for defense. On another, with a citizenry more conversant in science, it could help solve our nagging STEM problem, moving us from the middle of the pack internationally to the front, where we ought to be.

America, according to the head of the Electronic Software Association, is a nation of gamers. 67% of American households (that’s over 84,000,000 households) own at least one device used for video gaming. Beyond this, the video gaming industry generates money – lots of it. In 2016, the video game industry contributed $11.7 billion to the US GDP. This fueled the direct employment of 65,678 Americans and $30.4 billion in consumer spending. Combining games and science might not just be good for knowledge, technology, and education; it might be highly profitable.

So, what might a game that combines science with the pull and replayability of Clash of Clans look like? We’ll have to leave that to the designers and scientists, but a good start might be Mozak. Developed together by Washington University’s Center for Game Science and the Allen Institute for Brain Science, Mozak tasks players with tracing the intricate structure of actual animal and human neurons – in a nutshell, it’s crowdsourced neuroscience. The goal of the game includes reconstructing a full 3-D model of a human brain. Imagine similar games for curing cancer, getting astronauts to Mars, or tackling existential threats.

Mozak shows that we can harness video games in incredibly powerful ways. So, to that end, government should launch something like a ‘Gaming for the Greater Good’ Initiative. This would provide financial incentives for industry leading-gaming companies (like Activision, Electronic Arts, and Rovio Entertainment) universities, and research institutes to collaborate on developing highly-engaging, socially popular, addictive games that further science and science education.

Video games may hold the key to our next big scientific breakthrough. They can also play an immeasurably important role in teaching our citizens about the value of science and the role it should play in both our public and private lives. So, grab your controllers, everyone. It’s time to game.

Take it to the Moon: Repurposing Space Junk

By Damien O’Connell

750,000. That’s the amount of space junk larger than 1 cm orbiting our planet. On average, these objects travel at 40,000 kilometers per hour, and when they hit other objects, like satellites, the result’s comparable to a grenade going off.

Outer space refuse has already given us some headaches. The Soviet Union’s Mir Space Station endured several impacts. In 1996 and 2009, debris destroyed active satellites. In 2013, space junk hit a Russian satellite, changing its spin rate and orbit. And just last year, suspected space debris struck the Copernicus Sentinel – 1A Satellite, but luckily caused only little damage.

So far, we’ve been lucky, but that luck may soon run out. As space junks continues to accumulate, we could face the Kessler Syndrome, a situation where space junk becomes so numerous as to destroy all active satellites. As of June 2016, 1,419 satellites currently orbit earth. What if these disappeared? The world would take a very, very hard hit, both in lives and treasure. Beyond this, debris could potentially destroy the International Space Station and even make it impossible for space vehicles to enter or exit the atmosphere.

We’ve got to act. We could try to destroy space junk, sure, but that may very well just create more, leading us, again, to a Kessler Syndrome scenario. So, here’s another thought: Why don’t we repurpose it?

Here’s one idea: Collect the stuff and use it as raw materials to build a colony on the moon. Just last year, leading scientists, to include prominent members of NASA, produced a special edition of New Space journal where they laid out ideas and plans for colonizing the moon. The ultimate purpose for such a colony would be to support missions to Mars. And all that space junk orbiting us? We could use it to build the foundations of this future lunar home.

So, how do we get there? For starters, the government should fund research into finding ways to collect and move space debris. Cooperation with industry likely holds the key to success here. Government incentives could possibly even lead to an entire space debris reclamation sector. Right now, there’s little money in collecting space junk, but with the Moon colony mission (and Mars) on the minds of many leading scientists at NASA, this could change with a few nudges from the government.

Let the race for the first galactic garbage man begin.

Print an organ, save a life

By Andrew Peterson

U.S. organ donation systems have a supply and demand problem. The number of individuals in need of life-saving organs outstrips supply. The National Kidney Foundation reports that, as of November 2016, over 120,000 individuals are waiting for a life-saving organ transplant in the U.S.. Of these individuals, 100,791 require kidney transplants with a median wait time of 3.6 years. Many die before receiving a transplant. It is estimated that 13 individuals die every day waiting for a kidney.

There are several proposed solutions to this problem. Some have argued that the U.S. should adopt a mandatory deceased donation policy. This would resolve supply shortages and curb the illegal practice of organ trafficking. Another option is a regulated organ market. This approach would incentivize the exchange of human body parts between parties who are not be motivated by altruism.

These solutions are ethically messy, and policy makers might be reluctant to attach their names to these ideas. But what if we could avoid the ethical mess by leveraging technology?

What if we could print an organ?

We are in the midst of a 3-D printing revolution, and the prospect of printing organs is not mere science fiction. Reports in Nature and the Economist highlight that 3-D printing is already used for artificial joints, bone grafts, and cartilage structures. The U.S. market for printed body parts is greater than $500 million, and annual growth is increasing exponentially. Printing organs is favorable as compared to other methods, such as xenotransplantation: printed organs can be customized, can be printed on demand, have no viability window, and are not susceptible to zoonotic disease.

Despite this potential benefit, printing whole organs still faces technical obstacles. This is where policy makers have an opportunity to act. Below we highlight two recommendations that could position the U.S. as a medical technology leader in the 3-D printing revolution, and could ultimately save lives.

Recommendation 1: Incentivize collaborations between scientists and industry

The growth of the 3-D printing industry has already outpaced market forecasts. Economist project the industry will be worth $20 Billion by 2020. This pace of growth can be leveraged toward increased medical technology research by incentivizing relationships between science and industry. Federal research dollars could be used for match making in research project grants, or broad investment in University infrastructures that promote collaboration. The U.S. is already leading 3-D printing innovation. This model could put the U.S. in a position to make one of the most profound medical technology breakthroughs of the 21st century.

Recommendation 2: Promote discussion of ethical issues associated with printed body parts

New technologies bring new ethical questions. Printed body parts are no exception. Should we maximize equitable access of printed organs—or 3-D printing units? Should insurance companies pay for printed organs as they do for prosthetic technologies? And should printed organs be enhanced beyond normal function? These questions require discussion between industry leaders, scientists, and science and technology policy experts. Federal dollars can promote these discussions by integrating ethical analyses into research projects. The U.S. Human Genome Project and BRAIN Initiative use this incentive model. Federal dollars that support the 3-D printing revolution can do the same.